up:: Galilean Coordinate Space

Let be a galilean coordinate space. Let be the Galilean Boost of the galilean coordinate space by a uniform velocity .

Then for any two points , note that t(Q - P) = t(\beta_\vec{v}(Q) - \beta_\vec{v}(P)), thus it preserves the time distance.

For Simultaneous Events, note that their distance will remain the same: let . Then

||Q - P|| = ||\vec{q} - \vec{p}|| = ||\vec{q} + \vec{v}t - (p + \vec{v}t)|| = ||\beta_\vec{v}(Q) - \beta_\vec{v}(P)||

References